Outline – CNC Elements

• CNC Machine Tools
 – Machining Centers
 – Turning Centers
• Elements of Machine Tools
 – Main Structure
 – Transmission Elements
 – Power Generation Systems
 – Measurement Systems
 – Auxillary Systems
 – Control Systems

CNC Machining Center

• A machine tool capable of:
 – Multiple operation and processes in a single set-up utilizing multiple axis,
 – Typically has an automatic mechanism to change tools,
 – Machine motion is programmable,
 – Servo motors drive feed mechanisms for tool axis’s,
 – Positioning feedback is provided by sensors to the control system,

Types of Machining Centers

• Vertical Machining Centers
 – 3-Axis (X, Y, Z)
 – 4-Axis (X, Y, Z, Rotary table)
 – 5-Axis (X, Y, Z, Rotary table, Rotary spindle)
• Horizontal Machining Centers
 – 3-Axis (X, Y, Z)
 – 4-Axis (X, Y, Z, Rotary table)
 – 5-Axis (X, Y, Z, Rotary table, Rotary spindle)

Vertical Machine Centers*

[" Haas Automation.
3-Axis VMC

- Programmable X and Y axes in the plane of the table.
- Z-axis in the spindle’s direction.
- Cost is about $30,000.
- One can machine:
 - One surface of a cube with the cutter-end,
 - Four additional surfaces with the side of the cutter.

5-Axis VMC

3-Axis HMC

- Note the designations of the X, Y, and Z axes.
- Cost is about $90,000.
- Used in mass-production:
 - Easy access to table!
- One can machine:
 - One surface of a cube with the cutter-end,
 - Three additional surfaces with the side of the cutter.

[*] Haas Automation.
4-Axis HMC

- Generally horizontal
 - Table rotates to create the forth axis.
- True four-axis machines start around $100,000.
- One can machine:
 - Four surfaces of a cube with cutter-end
 - Three additional surfaces with the side of the cutter.

5-Axis HMC

- Similar to the 4-axis HMC except the spindle rotates around an axis.
- Cost is about $250,000.
- Used to machine complex parts and molds.
- One can machine:
 - Five sides of a cube with the cutter-end
 - Six sides with the side of the cutter.
- Part can be machined with only one setup:
 - Leads to more accurate part.

HMC vs. VMC

CNC Turning Center*

[*] Spinner WZM
Elements of CNC Machine Tools

- Main Structure
- Transmission Elements
- Power Generation Systems
- Measurement Systems
- Auxillary Systems
- Control Systems

Main Structure

- Stationary Elements
 - Columns, portals, beds, guideways
- Moving Elements
 - Translational: carriages, tables, saddles, etc.
 - Rotational: spindle, chuck, capstan, etc.
- Support Elements
 - Bearings: Ball bearing, journal bearings
 - Couplings

Mechanical Structure of VMC

Mechanical Structure of TC
Transmission Systems

- Ball screw
- Lead Screw
- Rack-and-Pinion
- Worm-and-Rack
- Belt Drives
- Gear Trains

Ball Screw Drives

- Common mechanisms in feed drives.
- High efficiency.
- Capability of backlash-free operation.
- Stroke length is limited up to 4 [m].

Kinematic Relationships for Ball Screw Drive

\[u = \frac{h_s \theta}{2\pi} \]
\[T = \frac{h_s F}{2\pi \eta_s} \]
\[\eta_s = \frac{1}{1 + 0.02 \frac{d_s}{h_s}} \]

Rack-and-Pinion Drive

- Used for a travel span of 3 [m] up to 20 [m].
- Backlash-free versions are also available
 - an extra-preloading pinion is employed.
 - quite expensive!
Preloaded Rack-and-Pinion Mechanism

Kinematic Relationships for Rack-and-Pinion Drives

\[u = r_0 \theta \]

\[T = \frac{r_0}{\eta} F \]

Feed Drive

- An arrangement in machine tools to "feed" the workpiece to the cutting tool.
- Sometimes called "axis drive system."

Power Generation Systems

- Actuators (Electromagnetic or Hydraulic)
 - Linear Motors
 - Rotary Motors
- Drive Systems
 - Power Converters
Measurement Systems

- Can be classified in many different ways:
 - Analog or Digital
 - Linear/Translational or Rotational
 - Absolute or Relative
 - Optical, Electromagnetic, etc.
 - Direct vs. indirect measurement

Auxillary Systems

- Tool Loading Systems
 - Tool Turret
 - Tool Magazine and ATC
- Coolant/Lubricant Supply Systems
- Gear Changers (Spindle) and Tool Alignment Systems
- Automatic Clamps and Brakes

Automatic Tool Changers

CNC Control Systems

- Motion Control System
 - Interpolators
 - Axis Position Controllers
- Programmable Logic Controllers
- Electronic Device Interfaces
- Graphical User Interfaces
Open-loop Control

• Stepper motor system is utilized.
 – Current pulses sent from control unit to motor
 – Each pulse results in a finite amount of revolution of the motor.

Closed-loop Control

• Uses position feedback concept.
 – The servo motor has a feedback loop to check the machine’s actual position.
 – Servo-motors have the ability to reverse instantly to adjust for position error
 – Error compensation allows for greater positional accuracy
 – Modern servo-motors (AC or DC) have higher torque ranges vs. stepper motors.

Open-loop Control (Cont’d)

• Control unit “assumes” desired position is achieved.
 – No positioning compensation
 – Most stepper motor develops low torque

• Advantages:
 – Simple
 – Inexpensive
 – Low maintenance costs

Accesories

Tool Setter (TC):

Rotary Table (VMC):
Complex Machined Parts

Optional Axis