Coordinate Systems, Transformations and their Line-Surface-Volume Elements

Coordinate Systems:
Three most common coordinate systems used in 3-dimensional representations are:

a) Cartesian coordinates
b) Cylindrical (polar) coordinates
c) Spherical (polar) coordinates

Their basic coordinates and associated unit vectors are shown in Figures 1, 2 and 3.

Figure 1 Cartesian Coordinate System

Figure 2 Cylindrical Coordinate System

\(\vec{e}_r \): radially outward from the center of the cylinder (Oz), on \(z = \) constant plane

\(\vec{e}_\theta \): tangent to the cylinder lateral surface in counterclockwise direction, on \(z = \) constant plane

\(\vec{e}_z \): in +z direction
Spherical coordinates

\(\mathbf{\hat{e}}_\rho \): radially outward from the center of the sphere, i.e. the origin
\(\mathbf{\hat{e}}_\theta \): tangent to the sphere in counterclockwise direction, on \(z = \text{constant} \) plane
\(\mathbf{\hat{e}}_\phi \): tangent to the sphere in clockwise direction on \(\theta = \text{constant} \) plane

Figure 3 Spherical Coordinate System

In Cartesian coordinates,
\(x = \text{constant} \in [\infty, +\infty] \) represents a plane parallel to Oyz plane,
\(y = \text{constant} \in [\infty, +\infty] \) represents a plane parallel to Oxz plane,
\(z = \text{constant} \in [\infty, +\infty] \) represents a plane parallel to Oxy plane.

In cylindrical coordinates,
\(r = \text{constant} \in [0, +\infty] \) represents a cylinder whose axis is Oz and radius is \(r \),
\(\theta = \text{constant} \in [0, +2\pi] \) represents a vertical half plane containing Oz,
\(z = \text{constant} \in [\infty, +\infty] \) represents a plane parallel to Oxy plane.

In spherical coordinates,
\(\rho = \text{constant} \in [0, +\infty] \) represents a sphere whose center is O and radius is \(\rho \),
\(\phi = \text{constant} \in [0, +\pi] \) represents a cone whose axis is Oz and tip is located at O,
\(\theta = \text{constant} \in [0, +2\pi] \) represents a vertical half plane containing Oz.

Transformations between Coordinate Systems:

<table>
<thead>
<tr>
<th>Cylindrical to Cartesian coordinates</th>
<th>Cartesian to cylindrical coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = r \cos \theta)</td>
<td>(r = \sqrt{x^2 + y^2})</td>
</tr>
<tr>
<td>(y = r \sin \theta)</td>
<td>(\theta = \tan^{-1}(y / x))</td>
</tr>
<tr>
<td>(z = z)</td>
<td>(z = z)</td>
</tr>
</tbody>
</table>
Spherical to Cartesian coordinates

\[
\begin{align*}
\rho &= \sqrt{x^2 + y^2 + z^2} \\
\theta &= \tan^{-1}(y/x) \\
\phi &= \tan^{-1}\left(\sqrt{\frac{x^2 + y^2}{z}}\right)
\end{align*}
\]

Cartesian to spherical coordinates

\[
\begin{align*}
x &= \rho \sin \phi \cos \theta \\
y &= \rho \sin \phi \sin \theta \\
z &= \rho \cos \phi
\end{align*}
\]

Spherical to cylindrical coordinates

\[
\begin{align*}
r &= \rho \sin \phi \\
z &= \rho \cos \phi \\
\theta &= \theta
\end{align*}
\]

Cylindrical to spherical coordinates

\[
\begin{align*}
\rho &= \sqrt{r^2 + z^2} \\
\phi &= \tan^{-1}(r/z) \\
\theta &= \theta
\end{align*}
\]

Line elements:

In Cartesian coordinates:

\[
ds = \sqrt{(dx)^2 + (dy)^2 + (dz)^2}
\]

In cylindrical coordinates:

\[
ds = \sqrt{(dr)^2 + r^2 (d\theta)^2 + (dz)^2}
\]

In spherical coordinates:

\[
ds = \sqrt{(dp)^2 + \rho^2 (d\phi)^2 + \rho^2 (\sin \phi)^2 (d\theta)^2}
\]

Surface and volume elements:

In Cartesian coordinates:

\[
\begin{align*}
dS_1 &= dy \, dz \\
dS_2 &= dx \, dz \\
dS_3 &= dx \, dy
\end{align*}
\]

Volume element:

\[dV = dx \, dy \, dz\]
In cylindrical coordinates:

Surface elements:
\[dS_1 = dr \, dz \quad ; \quad dS_2 = r \, d\theta \, dz \quad ; \quad dS_3 = r \, dr \, d\theta \]

Volume element:
\[dV = r \, dr \, d\theta \, dz \]

In spherical coordinates:

Surface elements:
\[dS_1 = \rho \, d\rho \, d\phi \quad ; \quad dS_2 = \rho^2 \, \sin \phi \, d\theta \, d\phi \quad ; \quad dS_3 = \rho \, \sin \phi \, d\rho \, d\theta \]

Volume element:
\[dV = \rho^2 \, \sin \phi \, d\rho \, d\theta \, d\phi \]